Solid electrolyte composed of nanoparticles shows promise for all-solid-state batteries

Solid electrolyte composed of nanoparticles shows promise for all-solid-state batteries
TEM observation results for the x = 0.25 powder sample. (a) HCDF image, (b) ED pattern, and (c) EDX maps. HCDF image, ED pattern and EDS maps were obtained from the same region. Credit: Chemistry of Materials (2024). DOI: 10.1021/acs.chemmater.4c02104

Often overlooked, rechargeable batteries play an important part in contemporary life, powering small devices like smartphones to larger ones like electric vehicles. The keys to creating sustainable rechargeable batteries include having them hold their charge longer, giving them a longer life with more charging cycles, and making them safer. Which is why there is so much promise in all-solid-state batteries.

The problem is discovering which solid electrolytes offer such potential advantages.

In a step toward that goal, an Osaka Metropolitan University research group led by Assistant Professor Kota Motohashi, Associate Professor Atsushi Sakuda, and Professor Akitoshi Hayashi of the Graduate School of Engineering has developed an electrolyte with high conductivity, formability, and electrochemical stability.

The findings were published in Chemistry of Materials.

The group achieved high conductivity at room temperature by adding Ta2O5 (tantalum pentoxide) to the previously developed solid electrolyte NaTaCl6, a combination of tantalum chloride and sodium chloride.

The discovered solid electrolyte, Na2.25TaCl4.75O1.25, also has a higher electrochemical stability than conventional chlorides and superior mechanical properties.

“The results of this research are expected to make a significant contribution to the development of composite solid electrolytes, in addition to the glass and crystal solid electrolytes that have been developed to date,” Professor Motohashi suggested.

“We will now be focusing on elucidating the ionic conduction mechanism of composite solid electrolytes and further developing materials.”

More information:
Kota Motohashi et al, Fast Sodium-Ion Conducting Amorphous Oxychloride Embedding Nanoparticles, Chemistry of Materials (2024). DOI: 10.1021/acs.chemmater.4c02104

Provided by
Osaka Metropolitan University

Citation:
Solid electrolyte composed of nanoparticles shows promise for all-solid-state batteries (2024, October 2)
retrieved 3 October 2024
from https://phys.org/news/2024-10-solid-electrolyte-nanoparticles-state-batteries.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.

Latest news

Best Garmin Prime Day deals on Amazon

Amazon is offering attractive Garmin deals for Prime Day today and tomorrow. If you’re in the market for a new...

10 Pharmaceutical Companies Advancing Women’s Health Through Targeted Drug Development — WOMEN OF WEARABLES

Written by Kherta Mohamed Research attentive to women's health has been significantly underfunded and underrepresented in clinical trials,...

Instrucciones de la APP Da Fit

Datos 1. ¿Cómo ajustar la hora de la pulsera? Pulse en la APP, active el Bluetooth y conecte la pulsera; se...

The Future of Eyewear is Here – LUCYD EYEWEAR

How AI is Revolutionizing Smart Glasses: The Future of Eyewear is Here – LUCYD EYEWEAR ...

Restoring quantum dot solar cells as if ‘flattening crumpled paper’

Oct 04, 2024 (Nanowerk News) Professor Jongmin Choi’s team from the Department of Energy Science and Engineering at DGIST conducted...

Must read

Google Fitbit Ace LTE Kids Smartwatch

Just like us, our kids need regular activity to...

Video Calling Comes to Your Wrist with Smartwa – WatchOut

Hey there, future explorers and tech enthusiasts! Have you...